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Abstract Paramagnetic effects offer a rich source of

long-range structural restraints. Here we review current

methods for site-specific tagging of proteins and oligonu-

cleotides with paramagnetic molecules. The paramagnetic

tags include nitroxide radicals and metal chelators. Par-

ticular emphasis is placed on tags suitable for site-specific

and rigid attachment of lanthanide ions to macromolecules.
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Introduction

Site-specific labelling of proteins and oligonucleotides with

paramagnetic tags introduces pronounced paramagnetic

effects in the macromolecules. At greater distances from the

paramagnetic centre where through-bond effects are

unimportant, four different effects can be exploited to

obtain long-range structural information: (i) paramagnetic

relaxation enhancement (PRE), (ii) pseudocontact shifts

(PCS), (iii) residual dipolar couplings (RDC) induced by

anisotropic paramagnetic centres and (iv) cross-correlated

relaxation (CCR) effects between anisotropic paramagnetic

centres and anisotropic parameters of the nuclear spins.

Paramagnetic centres with isotropic electron spin distribu-

tion (nitroxide radicals, Mn2? and Gd3? ions) are charac-

terized by slow electron relaxation and produce large PREs

that decay with r-6 (r = distance of the nuclear spin from

the paramagnetic centre) without complicating PCS, RDC

or CCR effects. In contrast, paramagnetic centres with

anisotropic electron spin distributions (most paramagnetic

metal ions, including most of the lanthanides) create all four

long-range paramagnetic effects, with a corresponding

increase in structural information (Otting 2008).

Site-specific tagging of proteins and nucleic acids with

nitroxide radicals has long been used in electron para-

magnetic resonance (EPR) for studies of the chemical and

dynamic environment of the tag and for distance mea-

surements between two tags (Hustedt and Beth 1999). The

labelling strategies developed for EPR have also success-

fully been applied in high-resolution NMR spectroscopy.

One of the most powerful recent applications of PREs is

the detection of rare conformational species in systems

undergoing chemical exchange, which is possible if the

rare species experiences much stronger PRE than the pre-

dominant species (e.g. Clore et al. 2007). Complexes with

Mn2? or Gd3? act in a similar way as nitroxide radicals

except that they deliver stronger PREs.

Site-specific tagging with metal ions associated with

anisotropic electron density distribution is less attractive

for EPR applications because of short electron relaxation

times. For NMR applications, however, these metal ions

are of great interest as their paramagnetic effects contain

very useful angular and distance information that can be

used to refine protein structures (Bertini et al. 2002a),

rapidly determine the structure of protein-protein and

protein-ligand complexes (Pintacuda et al. 2006, 2007;

John et al. 2006), explore inter-domain orientations in

proteins (Bertini et al. 2004), and assign protein NMR

resonances automatically by reference to the known three-

dimensional structure of the protein (Pintacuda et al.

2004a; Schmitz et al. 2006, 2008; John et al. 2007a).
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For example, a pseudocontact shift DdPCS depends on

the polar coordinates r, h and u of the nuclear spin with

respect to the principal axes of the Dv tensor:

DdPCS ¼ 1

12pr3
Dvax 3 cos2 h� 1

� �
þ 3

2
Dvrh sin2 h cos 2u

h i

ð1Þ

where Dvax and Dvrh denote, respectively, the axial and

rhombic components of the Dv tensor which is the

anisotropy component of the magnetic susceptibility tensor

v describing the magnetic moment of the paramagnetic

centre. The 1/r3 distance dependence of DdPCS leads to

measurable effects at distances of up to 40 Å and longer

(Table 1; Allegrozzi et al. 2000) which is greater than the

reach of PRE. In addition, a non-vanishing Dv tensor leads

to partial molecular alignment in the magnetic field and,

consequently, RDCs which are independent of the distance

from the metal (Tolman et al. 1997; Bertini et al. 2002b).

Finally, a non-vanishing Dv tensor also causes CCR

effects, some of which contain valuable structural infor-

mation (Ghose and Prestegard 1997; Boisbouvier et al.

1999), while others break the link between PREs and dis-

tance information (Pintacuda et al. 2004b).

Pseudocontact shifts are particularly easy to measure, as

they simply correspond to the difference in chemical shifts

between paramagnetic and diamagnetic samples (provided

contact shifts and residual anisotropic shifts due to align-

ment in the magnetic field (John et al. 2005) can be disre-

garded). For PCSs, as for all measurements of paramagnetic

effects, reference experiments performed with suitable

diamagnetic samples are of critical importance.

A sample with a diamagnetic tag presents a better dia-

magnetic reference than a sample without tag, as the mere

presence of a tag will change the chemical shifts in its

vicinity. In the case of nitroxide radicals, reduction with

ascorbate leads to diamagnetic hydroxylamine compounds

which can serve as a diamagnetic reference. Paramagnetic

metal ions can often be substituted by diamagnetic metal

ions of similar ionic radius and chemical properties. In this

regard and in many other aspects, lanthanide ions present

ideal paramagnetic labels. (i) They are chemically very

similar, i.e. a lanthanide binding site can bind any of the

lanthanide ions. (ii) Different lanthanides have very dif-

ferent Dv tensors (Table 1), with La3?, Y3? and Lu3?

presenting suitable diamagnetic references. (iii) The

unpaired electrons of lanthanides are shielded from the

ligand field, so that contact shifts are much less prominent

than for transition metal ions (Shelling et al. 1984). (iv)

The electron relaxation times of lanthanides are very short

(except for Gd3?), minimizing nuclear relaxation

enhancements. (v) Lanthanides play no biological role, i.e.

proteins do not naturally contain designated lanthanide

binding sites. As a result, even an excess of lanthanide ions

usually produces only relatively minor paramagnetic

effects (Campbell et al. 1973; Sattler and Fesik 1997). This

is an advantage because the absence of competing natural

binding sites facilitates the use of lanthanide tags. Usually,

only some metalloproteins in their apo form and the

phosphate backbone of oligonucleotides can bind lantha-

nides with significant affinity, placing more stringent

requirements on the lanthanide affinity of the tags.

With the recent advent of new lanthanide tags (for a

review, see Rodriguez-Castañeda et al. 2006), paramagnetic

NMR with lanthanides has gained strongly in interest. Some

of the lanthanide tags also confer useful luminescent prop-

erties to the protein (Chen and Selvin 1999; Nitz et al. 2003).

Table 1 Paramagnetism of metal ions with significantly anisotropic magnetic susceptibility tensors

Dvax/(10-32 m3)a PCS/ppm r = 15 Å PCS/ppm r = 20 Å PCS/ppm r = 30 Å PCS/ppm r = 40 Å

Co2? (high spin) 7.0b 1.10 0.46 0.14 0.06

Ce3? 2.1 0.33 0.14 0.04 0.02

Pr3? 3.4 0.53 0.23 0.07 0.03

Nd3? 1.7 0.27 0.11 0.03 0.01

Tb3? 42.1 6.62 2.79 0.83 0.35

Dy3? 34.7 5.46 2.30 0.68 0.29

Ho3? 18.5 2.91 1.23 0.36 0.15

Er3? 12.2 1.92 0.81 0.24 0.10

Tm3? 26.0 4.09 1.72 0.51 0.22

Yb3? 8.5 1.34 0.56 0.17 0.07

The PCS values are listed for Dvrh = 0 and h = 0 (Eq. 1) at the metal-nuclear spin distances indicated
a The Dvax values are those of Bertini et al. (2001), except that the Dvax values of Er3?, Tm3? and Yb3? were recalculated such that the principal

axes components follow the convention of |z| [ |y| [ |x|. This definition results in the z axes of these three lanthanides being approximately

orthogonal with respect to the z axes of the other lanthanides. In a given ligand field, most pseudocontact shifts induced by Er3?, Tm3? and Yb3?

have the opposite sign from those generated by the other lanthanides
b Dvax value from Arnesano et al. (2005)
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This review focuses on the design of lanthanide and other

metal tags, following a brief overview over nitroxide tags.

Discussion

General strategies for site-specific tagging

The principal strategies available for site-specific tagging

are the same for fluorescent tags, nitroxide tags and metal

tags. There are three principal strategies, including pro-

duction of fusion proteins, site-specific chemical modifi-

cation and engineering of specific tag sites.

Fusion with green fluorescent protein (GFP) is perhaps

the most successful example of any tagging of macro-

molecules. Also synthetic peptides containing nitroxide

radicals can, in principle, be fused to proteins in enzymatic

reactions using inteins or sortase (Mao et al. 2004; Mura-

lidharan and Muir 2006). Metal-binding peptide motives

are as straightforward to use in fusions as GFP (Donaldson

et al. 2001; Ma and Opella 2000; Wöhnert et al. 2003;

Martin et al. 2007; Zhuang et al. 2008).

Peptide fusions by in vivo biosynthesis are limited to

proteins and invariably restrict the tagging site to the N-

and C-termini. A more generally applicable strategy

employs site-specific chemical modification. Most reagents

target free thiol groups as the chemically most reactive

moiety in proteins or (suitably chemically modified)

oligonucleotides.

In order to circumvent the requirement of single solvent

exposed thiol groups, unnatural amino acids have recently

become available that bind metal ions and can be site-

specifically incorporated into a polypeptide chain using

amber stop codons together with orthogonal tRNA/ami-

noacyl-tRNA-synthetases (Xie et al. 2007; Lee et al. 2009).

Nitroxide tags

Proteins have been labelled with nitroxide tags for almost

50 years (Berliner 1976) and analysed by EPR. The first

nitroxide labelled protein studied by NMR was hen egg

white lysozyme with a spin label attached to His15

(Schmidt and Kuntz 1984). Site-specific labelling of pro-

teins with nitroxide tags has been extensively reviewed for

EPR and NMR applications (Kosen 1989; Hubbell and

Altenbach 1994; Hubbell et al. 1996; Fanucci and Cafiso

2006; Margittai and Langen 2008; Qin and Dieckmann

2004; Sowa and Qin 2008). Figure 1 presents an overview

over some of the commercially available reagents.

The most popular nitroxide tags target free thiol groups

and have been chemically activated as methanethiosulfo-

nates (MTS) (Smith et al. 1975) or by the pyridylthio group

(Zecherle et al. 1992). These tags react with thiol groups

with formation of disulfide bonds according to Scheme 1.

Fig. 1 Various commercially available nitroxide radical tags. a 3-

maleimido-2,2,5,5-tetramethyl-1-pyrolinyloxyl or maleimido-proxyl

(Griff and McConnell 1966), b 4-maleimido-2,2,6,6-tetramethyl-1-

piperidinyloxyl (4-maleimido-TEMPO; Griff and McConnell 1966), c
iodoacetamido-proxyl (Ogawa and McConnell 1967), d iodomethyl-

2,2,5,5-tetramethyl-2,5-dihydropyroli-1-oxyl (Hankovsky et al.

1980), e methanethiosulfonate of the proxyl spin label (Mchaourab

et al. 1999), f 1-oxy(-2,2,5,5-tetramethyl-3-pyrroline-3-methyl) meth-

anethiosulfonate (MTSL; Berliner et al. 1982), g 4-amino-2,2,6,6-

tetramethylpiperidine-1-oxyl-4-carboxylic acid (TOAC) which corre-

sponds to TEMPO functionalised into an a-amino acid (Marchetto

et al. 1993; Karim et al. 2007; Lindfors et al. 2008)
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The release of methanesulfinate or pyridine-2-thione,

respectively, makes these reactions practically irreversible.

Nonetheless, disulfide bonds can readily be broken by

reducing agents. Therefore, it can be advantageous to use

iodide tags that react with thiol groups under formation of

stable thioether bonds. Iodides are more difficult to syn-

thesize than methanethiosulfonates and correspondingly

fewer iodide tags are commercially available.

Maleimides react with thiol groups by simple addition to

the double bond. Both maleimides and iodides react not

only with thiol groups but also, more slowly, with amino

groups (Berliner 1976; Berliner et al. 1982).

Tagging with paramagnetic metal ions–natural metal

binding sites

Since lanthanide (Ln3?) ions have similar ionic radii as

Ca2? (Table 2), they can often replace Ca2? in calcium

binding proteins. The additional positive charge and larger

preferred coordination number, however, can lead to dif-

ferent stoichiometric ratios. For example, the two Ca2? ions

in the EF hand motif of parvalbumin can be replaced by a

single Yb3? ion (Lee and Sykes 1981). A similar situation

has been observed for a large number of calcium binding

proteins (Pidcock and Moore 2001), whereas in the case of

Calbindin D9k (Allegrozzi et al. 2000) the calcium at one of

the two EF-hand Ca2? binding sites can be replaced by a

lanthanide without displacing the other calcium ion. As a

rule, however, the differences in charge and preferred

coordination number compromise simple Ca2?–Ln3?

replacement (Biekofsky et al. 1999). The replacement can

be promoted by introduction of an additional charged resi-

due by site-directed mutagenesis (Bertini et al. 2003).

Another group of proteins capable of binding lantha-

nides are enzymes with two divalent metal ions in the

active site. For example, the exonucleases of T4 DNA

polymerase and of the e/h complex of the E. coli DNA

replisome have two Mg2? or Mn2? ions in their active sites

which can be replaced by a single lanthanide ion (Frey

et al. 1996; Brautigam et al. 1999; Pintacuda et al. 2004a).

Fusion tags

Different groups have proposed fusions with metal binding

tags. The ATCUN tag is a tripeptide sequence which binds

Cu2? with high affinity. It is restricted to the N-terminus of

proteins, as the amino terminus participates in the Cu2?

coordination (Donaldson et al. 2001).

Lanthanide-specific fusion tags were developed from the

metal binding motives found in calcium binding proteins.

Fusion of the EF-hand calcium binding motif

DNDGDGKIGADE to the N-terminus of a membrane

protein has been shown to endow the protein with a lan-

thanide binding site (Ma and Opella 2000). As this motif

strips the lanthanide ion of any hydration water, the com-

plex with Tb3? can also serve as a fluorescent tag, in

particular if a sensitising tryptophan side chain is posi-

tioned nearby for energy transfer to the lanthanide

(MacManus et al. 1990). Directed evolution for improved

lanthanide affinity and fluorescent properties led to the

lanthanide binding tag LBT1 (Fig. 2) which boasts lan-

thanide affinities in the low micromolar to nanomolar range

(Nitz et al. 2003). N-terminal fusion to ubiquitin was

shown to produce RDCs in the presence of Tb3? (Wöhnert

et al. 2003). A 32-residue peptide tag containing two LBTs

produced even larger RDCs but also enhanced the relaxa-

tion of the protein resonances (Martin et al. 2007).

While chemical reactions for paramagnetic tagging are

difficult to perform with 100% yield, the tag is always

Scheme 1

Table 2 Coordination numbers and iron radius of Ca2?, Mg2?, Mn2?

and Ln3?

Ion radius/Å Coordination numbers

Ca2? 1.00 6–7

Mg2? 0.65 6

Mn2? 0.78 6

Ln3? 0.98–1.20 8–9
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present in a fusion. Optimization of the length of the linker

peptide between tag and protein, however, is usually nec-

essary in order to minimize averaging of the anisotropic

effects due to motions of the tag with respect to the protein.

Peptide tags attached to cysteine residues

Lanthanide-binding peptide tags can also be site-specifically

attached to proteins if tag and protein contain a cysteine

residue. As methanethiosulfonate derivatives of peptides are

difficult to prepare, disulfide bond linkages are more easily

established by first activating the protein thiol group with

Ellman’s reagent, 5,50-dithiobis(2-nitrobenzoic acid)

(DTNB), to form a reactive mixed disulfide. Excess DTNB is

removed by dialysis. Subsequently, the tag is added in stoi-

chiometric quantities. The activated mixed disulfide spon-

taneously reacts with the thiol group of the tag to yield the

mixed disulfide with the tag. Progress of the reactions can be

monitored by the release of 5-thio-2-nitro-benzoate (TNB)

which is intensely yellow (Fig. 3). The yields of tagged

protein are usually very high ([70%; Su et al. 2006; note that

excess of tag can give rise to disulfide exchange reactions

leading to reduced protein and a disulfide bond between two

tag molecules.) As the LBTs are very acidic, they signifi-

cantly change the pI values of the protein. Therefore, puri-

fication by ion exchange chromatography readily separates

the ligated product from the unligated protein.

Chemical derivatization of a cysteine residue by a

peptide tag has a number of advantages over fusion

proteins. (i) The tag can be placed at strategically chosen

sites of the protein. (ii) Peptide tags are relatively bulky

and a disulfide bond often presents a shorter tether than the

polypeptide linker in a fusion protein. Therefore, the

position and orientation of the metal ion is easily restricted

by steric hindrance between tag and protein, limiting

averaging of the paramagnetic anisotropic effects induced

in the protein. (iii) The peptide tag can be unlabelled while

the protein is labelled with stable isotopes so that the NMR

resonances of the tag can readily be eliminated by isotope

selected experiments. (iv) The orientation and magnitude

of Dv tensors with respect to LBT have been determined

(Su et al. 2008a; Fig. 4). A protein with a free cysteine

residue can thus be derivatized with tags containing cys-

teines at different sites (e.g. LBT2 and LBT3 in Fig. 2) to

achieve predictably different PCS and RDC effects.

Peptide tags are not universally suitable for all proteins

even if they contain only a single cysteine residue. If the

cysteine is located at a highly solvent exposed site, the steric

hindrance between tag and protein may not be sufficient to

immobilize the tag, leading to reduced PCS and RDC

effects. Conversely, if the cysteine side chain is insuffi-

ciently exposed, the tag may be unable to fold around the

lanthanide ion which prevents lanthanide binding.

Chemical metal tags

Figure 5 shows a representative selection of the molecular

structures of published low molecular weight tags that bind

Fig. 2 Amino acid sequences of lanthanide binding peptides. The

troponin C sequence is from Rao et al. (1996) and the LBT1 sequence

from Nitz et al. (2003). Lanthanide-coordinating residues are shown

with bold letters. Cysteine residues of tags designed for disulfide bond

formation with proteins (Su et al. 2008a) are highlighted in black. The

W9A mutation enhances the solubility of the peptide. Leu16 and

Ala17 of LBT1 show multiple conformations in solution and are not

required for lanthanide binding

Fig. 3 Strategy for formation

of a disulfide bond between the

cysteine residue of a protein and

the thiol group of a tag
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metal ions and can be attached to proteins via one or two

disulfide bonds. Almost all of them are activated as

methanethiosulfonates, except for the tag T8 (4-mercap-

tomethyldipicolinic acid, 4-MMDPA) which has a free

thiol group. T8 is attached to cysteine residues of proteins

using the strategy of Fig. 3.

The ethylenediaminetetraacetic acid (EDTA) derivate T1

is commercially available. Complexes with Co2? or Yb3?

generated significant PCS and RDC effects in the N-ter-

minal domain of the protein STAT4 (Gaponenko et al.

2002; Dvoretsky et al. 2002). Complexes with Tb3?, Tm3?

or Yb3? also produced sizeable RDCs in a membrane

protein (Table 3) which is of special interest as detergents

are incompatible with most alignment media (Kamen et al.

2007). The main problem associated with T1 is the fact that

coordination to a metal ion generates two enantiomers

which, following attachment to a protein, give rise to dia-

stereomers. The formation of diastereomers is of little

consequence for metal ions with isotropic v tensor (Mn2?

and Gd3?; Pintacuda et al. 2004c; Clore et al. 2007). In the

case of metal ions causing PCSs, however, two different

PCS values result for each nuclear spin of the protein

(Ikegami et al. 2004; Pintacuda et al. 2004c) unless the

enantiomers are in fast chemical exchange with each other

or one of the enantiomers is much more populated in the

presence of the protein. The fast chemical exchange regime

can also be established, if the tag is bound to a peptide that

binds to the target protein, while undergoing rapid exchange

between free and bound peptide (Balogh et al. 2009).

The formation of diastereomers can be prevented by the

use of chiral ligands that preferentially select a single metal

binding chirality. The EDTA derivates T2 and T3 were

synthesized with a chiral carbon centre (Leonov et al.

2005; Haberz et al. 2006). Indeed, the 15N-HSQC spectra

of trigger factor and apo-calmodulin showed only one set

of peaks following derivatization with the Dy3? complexes

Fig. 4 PCS isosurfaces of the Tm3?-LBT complex (PDB code 1TJB;

Nitz et al. 2004). The isosurfaces identify the locations of PCSs of

±20 and ±1 ppm (blue: positive PCS; red: negative PCS). The

peptide backbone is drawn in black and solvent exposed side chains

of the tag that could potentially be mutated to Cys are shown in green.

Note that the PCS values of the backbone atoms of the N- and C-

terminal residues (Tyr1 and Leu16) have the opposite sign. Conse-

quently, attachment to a protein via the N- or C-termini produces PCS

data of opposite sign in the protein

Fig. 5 Lanthanide binding tags

for site-specific labelling of

proteins with metal ions. The

tags T1 and T8 are

commercially available
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of these tags. In addition, the T2 and T3 tags bind lan-

thanides very tightly with dissociation constants as low as

10-18 M (Leonov et al. 2005).

Diethylene triamine pentaacetic acid (DTPA) has an even

higher affinity for lanthanide ions than EDTA by matching

the preferred ligand coordination number of lanthanide ions

(eight to nine). Reaction of the bis-anhydride of DTPA with

S-(2-methylaminomethyl)methanethiosulfonate provides a

straightforward synthetic route to the tag T4. T4 has two

thiol active groups and is designed for ligation to two cys-

teines that are located 8–10 Å apart in the target protein. In

the case of a dicysteine mutant of the protein pseudoazurin,

however, the NMR spectrum revealed at least five different

diastereomeric species (Prudêncio et al. 2004).

Tags T5 to T7 are based on 1,4,7,10-tetraazacyclododecane-

N,N0,N00,N000-tetraacetic acid (DOTA) derivatives and ana-

logues. The macrocyclic ring binds lanthanides tightly but in

different enantiomeric forms (Parker et al. 2002). Indeed,

NMR spectra of the double mutant E51C/E54C of pseudo-

azurin derivatized with tag T5 and Yb3? showed evidence for

diastereomers (Vlasie et al. 2007). In contrast, the same protein

derivatized with T6 or T7 showed only a single set of peaks for

the Yb3? complex (Keizers et al. 2007). The advantage of the

two-armed tag T7 over the single-armed tag T6 is its reduced

mobility with respect to the protein, preventing averaging of

the paramagnetic effects. The positions of the cysteine resi-

dues in the protein, however, need to be planned carefully to

ensure a suitable distance between the thiol groups and suffi-

cient solvent exposure, while avoiding steric incompatibilities

between tag and protein (Keizers et al. 2008).

Tag T8 is based on pyridine-2,6-dicarboxylic acid (dipi-

colinic acid, DPA). It is the smallest lanthanide tag and

commercially available. Even though it is only a tridentate

ligand, it binds lanthanides with nanomolar affinity (Grenthe

1960). As lanthanide ions have up to nine coordination sites,

the tag allows the lanthanide ion to bind to additional ligands.

Intramolecular coordination to carboxyl groups of the pro-

tein is particularly favoured, resulting effectively in two-

armed attachment of the lanthanide ion to the protein. In this

way, the lanthanide can be immobilized close to the protein

surface. In our experience, distances of about 5–6 Å between

protein thiol group and the nearest carboxyl group yield good

lanthanide binding sites for the T8 tag (Fig. 6; Su et al.

2008b). By binding lanthanide ions in a non-chiral fashion,

the tag circumvents the problem of diastereomer formation

with the protein. Additional coordination by a protein car-

boxyl group not only immobilizes the lanthanide ion but also

enhances the lanthanide binding affinity. In at least one

example, the alignment tensor produced by the tag showed

the theoretical proportionality with the underlying Dv tensor

(Su et al. 2008b). This highlights the rigidity of lanthanide

attachment achieved in this way, as RDCs tend to be more

sensitive to averaging caused by tether flexibility than PCS

data.

Engineering metal binding sites into proteins

Metal binding sites can be engineered into proteins by site-

directed mutagenesis (Lu et al. 2001). This strategy very

much depends on the protein. Even if the structure of the

Table 3 Maximal residual dipolar couplings of protein backbone amides, 1DNH, obtained with different lanthanide binding tags

Lanthanide binding tag Protein Metal ion Magnetic field/Tesla Maximala (1DNH/Hz) Reference

sLBTb Ubiquitin Tm 18.8 About 5 Martin et al. (2007)

dLBTc Ubiquitin Tm 18.8 About -17 Martin et al. (2007)

LBTd Galectin-3 Dy 21.1 ±15 Zhuang et al. (2008)

LBT2e Arginine repressor Tm 18.8 21 Su et al. (2006)

T1f F1Fo ATP synthase Tm 18.8 -10.6 Kamen et al. (2007)

T1f F1Fo ATP synthase Tb 21.1 -8.1 Kamen et al. (2007)

T2f Trigger factor Dy 18.8 10.5 Ikegami et al. (2004)

T3f Trigger factor Dy Not reported About 9 Haberz et al. (2006)

T7f Pseudoazurin Dy 21.1 ±17 Keizers et al. (2008)

T8f Arginine repressor Tm 18.8 12.7 Su et al. (2008b)

CaM(Tb)4
g DHFR-M13 Tb 14.1 -7.4 Feeney et al. (2001)

a The largest numerical value is reported
b The peptide GPGYIDTNNDGWYEGDELLA fused to the N-terminus
c The peptide GPGYIDTNNDGWIEGDELYIDTNNDGWIEGDELLA fused to the N-terminus
d The peptide YIDTNNDGWYEGDELLA fused to the C-terminus
e Tag shown in Fig. 2
f Tags T1 to T8 are depicted in Fig. 5
g Calmodulin loaded with four Tb3? ions
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protein is known, significant challenges remain in design-

ing a lanthanide binding site with the affinity and rigidity of

binding required for NMR. In a recent example, the

mutations R31D and K43D of the N-terminal domain of

the cell adhesion protein CD2 led to an unfolded structure,

presumably because the mutations disrupted salt bridges

present in the wild-type protein (Fig. 7; Li et al. 2008).

Complexation with lanthanide or calcium ions, however,

restored the chemical shift dispersion characteristic of the

folded protein. As lanthanides prefer high coordination

numbers and coordination by carboxylate groups, destabi-

lization of the native protein structure is a likely side effect

of the design of lanthanide binding sites with at least three

negatively charged amino acid side chains.

Introduction of unnatural metal-binding amino acids can

circumvent the requirements of single cysteine residues (as

used by most paramagnetic tags) or a cluster of negatively

charged residues (as in the design of lanthanide binding

sites using natural amino acids). Aminoacyl-tRNA-syn-

thetases specific for over 30 different unnatural amino

acids have been evolved in the group of Peter G. Schultz

(Xie and Schultz 2005). Two of these amino acids carry

bispyridyl and 8-hydroxyquinoline groups, respectively,

which bind transition metal ions with high affinity (Xie

et al. 2007; Lee et al. 2009). In complex with Co2?, these

amino acids would be expected to generate useful PCS

data, but NMR results have not yet been published.

Tagging of oligonucleotides

Paramagnetic tags can be attached to DNA and RNA oli-

gonucleotides using the same strategies as for proteins.

Fig. 6 Tagging of the N-terminal domain of the E. coli arginine

repressor derivatized with tag T8 at Cys68. a Superimposition of 15N-

HSQC spectra of the uniformly 15N-labelled protein with tag T8. The

samples were prepared with 1:1 mixtures of Lu3? and Tb3? (cyan),

Lu3? and Tm3? (magenta), Lu3? and Yb3? (blue), or with Lu3? only

(black). The simultaneous presence of paramagnetic and diamagnetic

lanthanides allows extraction of the paramagnetic shifts from a single

spectrum, ensuring identical conditions for the paramagnetic and

diamagnetic samples. For example, one of the two cross-peaks of

Gly37 in the cyan spectrum arises from the diamagnetic protein but

does not overlap with the corresponding peak in the black spectrum,

illustrating the sensitivity of chemical shifts to slightly different

sample conditions. The spectra were recorded at 25�C and pH 6.5 at a
1H NMR frequency of 800 MHz. b Ribbon representation of the

NMR structure of the protein (Sunnerhagen et al. 1997). The side

chains of Glu and Asp (red), Arg and Lys (blue) and Cys68 (black)

are shown as sticks. The distance between the side chain oxygen of

Glu21 and sulphur of Cys68 is indicated with a dashed line. A fit of

the lanthanide position using the experimental PCS data positions the

metal within hydrogen bonding distance of the Glu21 carboxyl

oxygens (Su et al. 2008b)
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Methods for site-specific labelling are available that achieve

selective tagging of the 30 or 50 ends, the ribose ring, the

phosphate backbone and the nucleotide base. In order to

target an individual phosphoester group, it is usually

introduced as a thiophosphate. This presents a thiol group

that is more reactive towards, e.g., iodomethylproxyl than

any other functional group in oligonucleotides. Synthetic

strategies are available to introduce thiophosphate groups

selectively at the 30 or 50 ends (Caron and Dugas 1976;

Macosko et al. 1999; Grant and Qin 2007) or the phosphate

backbone (Qin et al. 2001). Selective attachment of a nitr-

oxide radical to thiouracil relies on the same principle.

Nitroxide labelling of ribose rings is possible by reacting

a 20-aminoribose nucleotide with a spin label that is reac-

tive towards amino groups (e.g. TEMPO-isocyanate;

Edwards et al. 2001; Kim et al. 2004; Edwards and Sig-

urdsson 2007). Unnatural nucleotides can be chemically

synthesised with metal binding sites at many different

positions (Ramos and Varani 1998; Iwahara et al. 2003;

Qin et al. 2003; Piton et al. 2007). Figure 8 shows the

nucleotide base-linker-EDTA moiety of a commercially

available thymidine derivative that has been used in NMR

studies (Iwahara et al. 2003).

Tags for PCSs and RDCs

Different considerations apply if a lanthanide tag is to be

used for measurements of PCSs or RDCs. If the primary

goal is the measurement of RDCs, positioning the metal

ion far from the surface of the protein has the advantage of

minimizing paramagnetic relaxation enhancements of

nuclear spins in the protein. For RDC measurements,

limited flexibility of the tether between the metal binding

site and the protein can be acceptable, as the resulting

average alignment tensor can be accurately determined

from the RDCs. For PCS measurements, however, only a

superimposition of different Dv tensors can accurately

describe the PCSs if the metal position varies. Therefore, if

PCS data are the primary aim, rigid attachment of the metal

ion is of critical importance. This is most easily achieved if

the metal ion is positioned in the core or close vicinity of

the protein. In addition, protein spins surrounding a metal

ion on all sides offer a more comprehensive sampling of

the PCS isosurfaces and, hence, a more accurate fit of the

Dv tensor and metal position than if the metal ion is

positioned far from the protein. For many applications, this

advantage may outweigh the drawback that protein spins

near a paramagnetic centre are subject to pronounced PRE

effects.

Table 3 provides an overview of the largest RDCs

reported for a selection of proteins modified with different

lanthanide binding tags. In comparing the RDCs, one must

keep in mind that the magnitudes of the alignment tensors

and RDCs resulting from paramagnetic molecular align-

ment are proportional to the square of the magnetic field

strength (Bertini et al. 2002b). The examples show that

paramagnetic alignment can produce sizeable RDCs. Fur-

thermore, the variability in RDC magnitudes obtained with

very similar lanthanide-binding peptide tags indicates that

minimizing the movements of a tag relative to the protein

is more important for the observation of large RDCs than

the use of increased magnetic field strengths or more highly

paramagnetic metal ions.

Concluding remarks and future directions

Recent efforts have delivered strategies by which lantha-

nide-binding tags can be site-specifically positioned in

proteins and oligonucleotides with a covalent tether. Less

invasive strategies could use non-covalently binding tags.

Examples include specifically binding ligands with nitrox-

ide (Jahnke et al. 2000) or metal tags (Balogh et al. 2009). In

each case, the suitably tagged ligands have to be synthe-

sized chemically. In a related approach, calmodulin loaded

with a paramagnetic lanthanide ion has been used to confer

paramagnetism to a protein fused to a calmodulin-binding

Fig. 7 Ribbon presentation of the N-terminal domain of the cell

adhesion protein CD2 (PDB code 1HNG; Jones et al. 1992). The side

chains of Glu29 and Glu41 are coloured in red and the side chains of

Arg31 and Lys43 are coloured in blue. The R31D/K43D double

mutant can bind calcium and lanthanide ions with dissociation

constants of 90 and 0.3 lM, respectively (Li et al. 2008)

Fig. 8 Part of a commercially available thymidine derivative with

EDTA tag
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peptide (Feeney et al. 2001; Table 3). Conceptually, non-

covalently binding lanthanide tags are reminiscent of the

long-established use of lanthanide reagents as shift reagents

for the analysis of small organic compounds. Non-covalent

binding allows for chemical exchange to occur between

bound and free tag which can considerably assist in reso-

nance assignments (John and Otting 2007; John et al. 2007b;

Su et al. 2008a). The challenge is to find lanthanide reagents

that offer site-selective complementarity of molecular shape

and charge to out-compete non-selective intrinsic affinities

to functional groups in proteins and oligonucleotides.
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